
Modeling	earth-surface	dynamics	with	Landlab

The	Landlab development	team:
Jordan	Adams	(Tulane	U.)

Nicole	Gasparini (Tulane	U.)
Dan	Hobley (Univ.	of	Colorado,	Now	at	Cardiff)

Eric	Hutton	(CSDMS)
Erkan Istanbulluoglu (Univ.	of	Washington)

Jennifer	Knuth	(Univ.	of	Colorado)
Sai Siddharta Nudurupati (Univ.	of	Washington)

Greg	Tucker	(Univ.	of	Colorado)

NATURE

NUMERICAL	
ALGORITHM

SOFTWARE

DYNAMICAL	
MODEL

2D	models	of	earth-surface	processes

(a) (b) (c)

(d) (e)
(f)

CATCHMENT	HYDROLOGY
(Ivanov et	al.,	2004)

SOIL	EROSION
(Mitas and	Mitasova,	1998)

GLACIER	DYNAMICS
(Kessler	et	al.,	2006)

LANDSCAPE	EVOLUTION
(Tucker	and	Hancock,	2010)

IMPACT	CRATERING	AND	DEGRADATION
(Howard,	2007)

LAVA	FLOWS
(Kelfoun et	al.,	2009)

What	is	Landlab?

• A	Python-language	programming	library
• Supports	efficient	creation	and/or	coupling	of	
2D	numerical	models

• Geared	toward	(but	not	limited	to)	earth-
surface	dynamics

http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html

What	Landlab provides

1. Grid	creation	and	management
– Create	a	structured	or	unstructured	grid	in	one	or	

a	few	lines	of	code
– Attach	data	to	grid	elements
• Facilitates	staggered-grid	schemes
• Passing	the	grid	=	passing	the	data

Cell

Node (interior) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

RASTER
HEXAGONAL

RADIAL

VORONOI	/	DELAUNAY

What	Landlab provides

2.		Coupling	of	components
– A	componentmodels	a	single	process	(e.g.,	

lithosphere	flexure,	incident	solar	radiation,	flow	
routing	across	terrain)

– Components	have	a	standard	interface	and	can	
be	combined	by	writing	a	short	Python	script

– Save	development	time	by	re-using	components	
written	by	others

– Components	also	include	analytical	tools	for	
analyzing	landscapes	(e.g.	channel	steepness,	
hillslope	length,	…)

What	Landlab provides

3.		Input	and	output
– Read	model	parameters	from	a	formatted	text	file	
– Read	in	digital	terrain	data	(e.g.,	DEMs)	è grid
– Write	gridded	output	to	files	(netCDF format)
– Plot	data	using	Matplotlib graphics	library

What	Landlab provides

4.		Support	for	cellular-automaton	modeling
– CellLab-CTS:	Continuous-time	stochastic	CA	

model	“engine”

Cell States

fluid grain

Transitions representing motion

up down

left

right

Cell pairs without transition

2 seconds 200 seconds

(Tucker	et	al.,	2016	Geoscientific Model	Development)

Examples	of	Landlab-built	models

(Source:	Francis	Rengers,	USGS)

Storm	runoff	patterns	in	the	
Transverse	Ranges

(Source:	Francis	Rengers,	USGS)

*Note scale
differences

Storm duration

Application in a real world setting: Spring Creek, CO.

Elevation	(m
)

(source:	Jordan	Adams,	Tulane	University)

Cellular	automaton	model	of	
weathering	along	fractures

(Source:	Greg	Tucker,	CU-Boulder)

Why	do	strike-slip	faults	sometimes	show	
distributed	shear,	and	sometimes	not?

NEAR-FAULT	SHEAR	INFLUENCES	LANDFORMS

SAN	ANDREAS	FAULT,	MECCA	HILLS,	CA
(Source:	Harrison	Gray,	CU-Boulder)

VALLEY	WIDENING	BY	
LATERAL	BEDROCK	
EROSION

(Source:	Abby	Langston,	Kansas	State	University)

Weathering	&	disturbance	similar	to	slip	rate

W’	=	D’	=	1

(Source:	Greg	Tucker,	CU-Boulder)

VEGETATION RESOURCE

Climate	Change	Experiments	#1

(Source:	Sai	Nudurupati,	U.	Washington)

Using	Landlab grids

• Aim:	make	it	easier	
to	set	up	a	2D	
numerical	model	
grid

• Grid	data	and	
functions	contained	
in	a	single	Python	
object

Slingerland,	Harbaugh,	and	Furlong	(1994)

Currently	four	grid	types	are	available:

• RasterModelGrid

• VoronoiModelGrid

• HexModelGrid

• RadialModelGrid
Cell

Node (interior) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Example:	creating	a	grid
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid((4, 5), 10.0)
>>> rg.number_of_nodes
20

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Grid	elements:	nodes

>>> rg.number_of_node_rows
4
>>> rg.number_of_node_columns
5
>>> rg.x_of_node
array([0., 10., 20., 30., 40., 0., 10., 20., 30., 40., 0.,

10., 20., 30., 40., 0., 10., 20., 30., 40.])
>>> rg.y_of_node
array([0., 0., 0., 0., 0., 10., 10., 10., 10., 10., 20.,

20., 20., 20., 20., 30., 30., 30., 30., 30.])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Node	numbering

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Nodes	are	
always	
sorted	by
y	coordinate

Nodes	with	
equal	y	are	
sorted	by	x

Core	and	boundary	nodes
• Core	nodes
• Boundary	nodes

• Open
• Fixed	value
• Fixed	gradient
• Looped

• Closed

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Grid	elements:	links

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Link =	
directed	line	
segment	
connecting	
two	adjacent	
nodes

Link	
direction	is	
toward	
upper	right	
half-space	by	
default

Grid	elements:	links

>>> rg.number_of_links
31
>>> rg.node_at_link_head
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 12, 13,

14, 11, 12, 13, 14, 15, 16, 17, 18, 19, 16, 17, 18, 19])
>>> rg.node_at_link_tail
array([0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,

9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 15, 16, 17, 18])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Tail
node

Head
node

Link	numbering

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0 1 2 3

4 5 6 7 8

9 10 11 12

13 14 15 16 17

18 19

Links	are	
sorted	by	
mid-point
y	coordinate

Links	with	
equal	y	are	
sorted	by	x

20 21

22 23 24 25 26

27 28 29 30

Active	and	inactive	links

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0 1 2 3

4 5 6 7 8

9 10 11 12

13 14 15 16 17

18 19

ACTIVE:
Connects	two	core	nodes	OR	
a	core	and	an	open	
boundary

INACTIVE:
Connects	to	one	or	more	
closed	boundary	nodes	OR
Connects	two	open	
boundary	nodes

20 21

22 23 24 25 26

27 28 29 30

Grid	elements:	cells

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Cell	=	
polygon	
bounded	by	
faces and	
containing	a	
node

Perimeter	
nodes	do	not	
have	cells

Grid	elements:	cells

>>> rg.number_of_cells
6
>>> rg.area_of_cell
array([100., 100., 100., 100., 100., 100.])
>>> rg.faces_at_cell
array([[4, 7, 3, 0],

[5, 8, 4, 1],
[6, 9, 5, 2],
[11, 14, 10, 7],
[12, 15, 11, 8],
[13, 16, 12, 9]])

>>> rg.node_at_cell
array([6, 7, 8, 11, 12, 13])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Cells	have:
• Area
• Faces
• A	node

Cell	numbering

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0 1 2

3 4 5

Cells	are	
sorted	by
y	coordinate

Cells	with	
equal	y	are	
sorted	by	x

Fields:	attaching	data	to	the	grid

• A	field is	a	NumPy array	containing	data	that	are	
associated	with	a	particular	type	of	grid	element	
(typically	nodes	or	links)

• Fields	are	1D	arrays
• Values	correspond	to	the	element	with	the	same	ID.	
Example:	value	5	of	a	node	field	belongs	to	node	#5.

• Fields	are	“attached”	to	the	grid	(the	grid	object	
includes	dictionaries	listing	all	the	fields)

• Fields	have	names	(as	strings)
• Create	fields	with	grid	functions	add_zeros,	
add_ones,	or	add_empty

Fields:	example

>>> h = rg.add_zeros('water__depth', at='node')
>>> h
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.])
>>> h[1] = 100.0
>>> h
array([0., 100., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0.])

>>> rg.at_node['water__depth']
array([0., 100., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0.])

Reading	raster	digital	terrain	data

Landlab’s read_esri_ascii function:
• Reads data	from	ESRI	ASCII	raster	file
• Creates a	RasterModelGrid and	a	
data	field

• Also:	read/write netCDF files
• Example:
>>> from landlab.io import read_esri_ascii
>>> (mg, z) = read_esri_ascii('west_bijou_gully.asc',

name=’elevation')

Staggered-grid	schemes:
Scalars	at	nodes,	vectors	at	links

Slingerland,	Harbaugh,	and	Furlong	(1994)

The mathematical problem

@⌘

@t

= �rq
s

⌘ = land-surface elevation

t = time

q = sediment flux [L

2

/T]

q = �Dr⌘

D = transport coe�cient [L

2

/T]

Linear	diffusion	example

s

s

Each interior node i lies within a cell whose

surface area is A

i

.

We can write mass balance for cell i in terms

of sediment fluxes across each of its four

faces:

d⌘

i

dt

=

1

A

i

4X

j=1

�xq

j

ηi ...

...

...

...... ...

......

The	numerical	problem:	
finite-volume	solution	scheme

ηi ...

...

...

...... ...

......

qwest

d⌘

i

dt

=

�x

A

i

[q
west

...

ηi ...

...

...

...... ...

......

qwest qeast

d⌘

i

dt

=

�x

A

i

[q
west

� q
east

...

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

d⌘

i

dt

=

�x

A

i

[q
west

� q
east

+ q
south

...

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

qnorth

Flux depends on gradient, which is

calculated between adjacent nodes:

q
west

= �D

@⌘

@x

�����
(west face)

⇡ �D

⌘

i

� ⌘

west

�x

!

ηiηwest

link from ηwest to ηi

Calculating	the	gradient	of	a	scalar	field

>>> deta_dx = rg.calc_grad_at_link(eta)

• eta is	a	scalar	defined	at	nodes
• One	value	of	deta_dx for	every	link
• Positive	when	eta increases	in	the	link	direction
• Negative	when	eta decreases	in	the	link	direction

ηiηwest

link from ηwest to ηi

Calculating	the	divergence	of	a	gradient	field

>>> q = -D * deta_dx
>>> dqdx = rg.calc_flux_div_at_node(q)

• q is	a	vector	defined	at	links
• One	value	of	dqdx for	every	node
• Positive	when	net	flux	is	outwards

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

qnorth

Q:	What	if	you	need	a	scalar	value	at	a	link?	
A:	Landlab’s mapping	functions

>>>	h_link =	rg.map_mean_of_link_nodes_to_link(h)

>>>	h_link =	rg.map_value_at_max_node_to_link(w,	h)

2.0 5.03.5

w	=	10.2
h	=	2.0 2.0 w	=	9.7

h	=	5.0

Components

• A	component is	a	self-contained	piece	of	code	
that	typically	represents	one	process

• Components	have	a	standardized	interface	that	
allows	them	to	be	easily	coupled	with	one	
another	using	a	Python	script

• Components	are	normally	implemented	as	
Python	classes.	For	example:

>>> ld = LinearDiffuser(rg, linear_diffusivity=0.01)
>>> ld.run_one_step(dt=1.0)

The	components
• Describe	individual	
surface	processes

• “Plug	&	Play”
• Standard	interface
• Use	the	library,	or	BYO

Documentation:	Users’	Guide

https://github.com/landlab/landlab/wiki/User-Guide

Documentation:	Reference	/	API
http://landlab.readthedocs.io

https://github.com/landlab

Documentation:	source	code,	tutorials,	etc.,	publicly	available	on	GitHub

https://github.com/landlab/landlab/wiki/Tutorials

If	you	still	need	to	install:

http://landlab.github.io

èInstall

Follow	instructions

How	to	update	Landlab

In	terminal	window	or	command	prompt:

pip	uninstall	landlab

conda install	landlab –c	landlab

How	to	download	and	run	tutorials
• Go	to:	
https://github.com/landlab/landlab/wiki/Tutorials

• Click:
Click	here	to	download	all	the	tutorials

• Save	ZIP
• Double-click	to	unpack
• In	terminal	or	command	window,	navigate	to	new	
folder

• Enter:	jupyter notebook
• Shift-Enter	to	move	through	each	cell

